

Table of Contents
Introduction...Page 2

Chapter 1...Page 3

779,236 Java Logging Statements, 1,313 GitHub Repositories: ERROR, WARN or FATAL? 
Java logs data crunch: How GitHub’s top Java projects use logs?

Chapter 2...Page 9

Is Standard Java Logging Dead? Log4j vs Log4j2 vs Logback vs java.util.logging 
The Java log levels showdown: SEVERE FATAL ERROR OMG PANIC

Chapter 3...Page 16

Over 50% of Java Logging Statements Are Written Wrong 
Why can’t production logs help you find the real root cause of your errors?

Chapter 4...Page 22

What's the Top Java Logging Method on GitHub? String Concatenation vs
Parameterized Logging 
Parameters, concatenations or both; which logging method should you use?

Chapter 5...Page 29

How Did We Get the Data? Google BigQuery 
To reach the first set of Java projects and the breakdown of their logging, we completely
relied on Google BigQuery and the GitHub archive database.

Meet OverOps...Page 36

Final Thoughts..Page 38

1All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

The Complete GitHub Logging
Research: How Are We Using

Logs?

One of the things we like most at OverOps is crunching data and learning new
things. Yes, we’re that fun at parties. If you feel the same, then you’ve reached the
right place.

In our following eBook, we’ve decided to see how developers use their logs, along
with how we can make them better for the entire development process.

For this data crunch we used Google BigQuery and GitHub’s database - the top
400,000 repositories by number of stars they were given in 2016, with some SQL on
top.

Now it’s time to slice, dice and start crunching these repositories by their logs.

2All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Introduction

https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook

779,236 Java Logging
Statements, 1,313 GitHub

Repositories: ERROR, WARN
or FATAL?

Java logs data crunch: How GitHub’s top Java projects use logs?

The starting point for this research is the GitHub archive, and its datasets on Google
BigQuery. We wanted to focus on qualified Java projects, excluding android, sample
projects, and simple testers. A natural choice was to look at the most starred
projects, taking in the database of the top 400,000 repositories.

We ended up with 15,797 repositories with Java source files, 4% of the initial
dataset. But it didn’t stop there. Looking at the number of logging statements, we
decided to only focus on projects with at least a 100 different statements, and only
those who use the standard Logback / Log4j / Log4j2 / SLF4J levels: TRACE,
INFO,DEBUG, WARN, ERROR and FATAL. JUL, java.util.logging, was ignored. More
details on that later.

This left us with 1,313 Java project data vectors to play with. We believe this to be a
fairly representative sample of what we were trying to achieve.

3All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Chapter 1

https://www.githubarchive.org/
https://www.githubarchive.org/

Result Highlights

The Average Java Log Level Distribution

The Average Java Log Level Distribution

And the winner is… INFO, making up 29.7% of the logging statements in the
average project. Followed by DEBUG with 28.1%, and ERROR with 22.6%.

Closing the list are WARN (14%), TRACE (5.2%), and FATAL (0.4%).

On our own codebase, we got TRACE (0.55%), INFO (33.42%), DEBUG (7.92%),
WARN (10.85%), and ERROR (47.26%).

4All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Production vs. Development Logging

Based on this data, the next logical step was to look at the production logging vs.
development logging breakdown. Since most (sane) people turn off logging for any
level below WARN, this is where we drew the line.

Production vs. Development Logging

For the average Java application, there are 35.5% unique logging statements that
have the potential to be activated in production, and 64.5% statements that are only
activated in development. That’s almost DOUBLE. And not only that, naturally, log
levels below WARN happen much more often, throw this into production and the
difference would be much bigger.

Excessive logging can produce a lot of overhead in terms of both storage, and
performance, which quickly translates to lots of money – since log management tools
would charge you by the log’s volume. In one of our previous research posts, we also
found out that 3% of the top unique log events, produce on average 97% of the total
log size.

btw, regardless of which logging levels you’re using in production, you can get the
last 250 DEBUG, TRACE and INFO statements for any issue in production with our
tool.

5All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

http://blog.takipi.com/we-crunched-1-billion-java-logged-errors-heres-what-causes-97-of-them/
http://blog.takipi.com/we-crunched-1-billion-java-logged-errors-heres-what-causes-97-of-them/
http://blog.takipi.com/we-crunched-1-billion-java-logged-errors-heres-what-causes-97-of-them/
http://blog.takipi.com/we-crunched-1-billion-java-logged-errors-heres-what-causes-97-of-them/
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook

Actual Log Levels in Use

Another cool thing the data allowed us to look at was the popularity of different log
levels. How often is TRACE used compared to other levels? We’re not big fans of
TRACE but looks like 55% of the projects use it:

Another interesting insight is that FATAL is only used by 20% of the projects. INFO,
DEBUG, WARN, and ERROR are kings.

6All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Examining the Data

Looking at the results from the GitHub data crunch on Google BigQuery, we first
ended up with 15,797 repositories with Java source files. 60% of those, didn’t use
logging at all, so they weren’t relevant to this research. These repositories mostly
included test projects, small experiments, utilities, learning materials, etc.

We broke those down to projects by number of logging statements:

Number of Logging Statements per Project

Another criteria for the research was that we only use projects with a considerable
amount of logging baked in. Based on this breakdown, we decided to focus on
projects with 100+ logging statements.

7All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Digging in further, we looked into java.util.logging levels versus Logback / Log4j /
SLF4J and decided to focus on the latter:

Logging Levels by Type

The 1,313 Java projects we used for the research were those that had at least a 100
logging statements, excluding those that were pure JUL, java.util.logging (FINE,
FINER, FINEST, SEVERE, etc.).

Final Thoughts

We’ve learned that INFO makes up 29.7% of the logging statements in the average
project, and that there are 35.5% unique logging statements with the potential to be
activated in production, while 64.5% of statements are only activated in
development. Now, let’s break our logging down into levels.

8All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Is Standard Java Logging
Dead? Log4j vs Log4j2 vs

Logback vs java.util.logging

The Java log levels showdown: SEVERE FATAL ERROR OMG PANIC

Capitalized log levels induce high levels of stress. What if, instead of ERROR we’d
just use “oops”? After our data crunch over GitHub’s top Java projects and the
logging statements they use, we now know the log level breakdown of the average
Java project.

Now, it’s time to explore the data set from another angle, shed some more light on
the dataset, and put the focus on the use of standard java.util.logging levels versus
more popular frameworks like Log4j (+ Log4j 2), and Logback.

Step right in.

9All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Chapter 2

Meet the players

Logging utilities can be roughly divided to 2 categories: the logging facade and the
logging engine.

As far as logging facades go, you pretty much have 2 choices: slf4j and Apache’s
commons-logging. In practice, 4 out of 5 Java projects choose to go with slf4j.
Based on data from the top Java libraries in 2016 on Github. The motivation for using
a logging facade is pretty definitive and straightforward, an abstraction on top of your
logging engine of choice – allowing you to replace it without changing the actual
code and logging statements.

As to the logging engine, the most popular picks are Logback, which is an evolved
version of Log4j, Log4j itself, and its new version since the development was passed
on to the Apache Software Foundation, Log4j2. Trailing behind is Java’s default
logging engine, java.util.logging aka JUL.

10All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

http://blog.takipi.com/the-top-100-java-libraries-in-2016-after-analyzing-47251-dependencies/
http://blog.takipi.com/the-top-100-java-libraries-in-2016-after-analyzing-47251-dependencies/
http://logback.qos.ch/reasonsToSwitch.html
http://logback.qos.ch/reasonsToSwitch.html
http://logback.qos.ch/reasonsToSwitch.html
http://logback.qos.ch/reasonsToSwitch.html

Pointing fingers and calling names

On the “superficial” side of things, each of the logging frameworks has slightly
different names for their logging levels.

In the rare case where slf4j is used with java.util.logging, the following mapping takes
place:

FINEST -> TRACE 
FINER -> DEBUG 
FINE -> DEBUG 
INFO -> INFO 
WARNING -> WARN 
SEVERE -> ERROR

Another thing to notice here is that Logback and java.util.logging have no FATAL
equivalent. Behind those error names, are simple integer values, that help control the
logging level in a running application. Each library also contains values for OFF and
ALL, which basically set the logger level to actually transmit everything, or nothing.
Setting a logger level at WARN for instance, would only log WARN messages and
above – Its practically the default setting for production environments.

11All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

btw, one of the cool things about the tool that we’re building, is that you can get log
messages lower than WARN in production, even if you’ve set the logger level to
WARN. Check out this video for a quick (25 sec) demonstration.

How does the level naming breakdown look in practice?

For the data crunch, we focused on the top starred Java projects with at least 100
logging statements in either of the methods. Examining the data set of projects,
here’s what we found:

Only 4.4% of projects exclusively used the java.util.logging naming scheme.

12All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

http://www.overops.com/
http://www.overops.com/
https://www.youtube.com/watch?v=3mebWlNvqYU
https://www.youtube.com/watch?v=3mebWlNvqYU

The average non jul logging project, looked like this (examining 1,313 projects):

To look at the average java.util.logging project, we filtered it down to include only
projects who had at least 100 statements from levels that don’t overlap with the
non-JUL naming scheme (WARNING and INFO).

13All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

This left us with a smaller dataset, so it might not be big enough to make definite
conclusions from:

With that said, it looks like in both situations, roughly ⅔ of logging statements are
disabled in production, since only WARN and above are activated in that case.

Fun fact: As an extra datapoint, we also looked at ALL / OFF levels. Turns out only
8.6% of the projects examined used them both.

The data stress that java.util.logging is, well, practically dead. Most serious projects
choose to go with 3rd party logging frameworks.

14All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Final Thoughts

It seems that java.util.logging is, well, practically dead. Most serious projects choose
to go with 3rd party logging frameworks.

But do we even know how to use these 3rd party logging frameworks? Apparently
not, since most of our logging statements are written wrong.

15All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Over 50% of Java Logging
Statements Are Written Wrong

Why can’t production logs help you find the real root cause of your errors?

Asking if you’re using log files to monitor your application is almost like asking… do
you drink water. We all use logs, but HOW we use them is a whole different question.

Let’s take a deeper look into logs and see how they are used and what’s written to
them. Let’s go.

16All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Chapter 3

TL;DR: Main Takeaways

If you’re not into pie, column or bar charts and want to skip the main course and
head straight for the dessert, here are the 5 key points we learned about logging and
how it’s really done:

1. Logs don’t really have as much information as we think, even though they can add
up to hundreds of GBs per day. Over 50% of statements have no information about
the variable state of the application

2. In production, 64% of overall logging statements are deactivated

3. The logging statements that do reach production have 35% less variables than the
average development level logging statement

4. “This should never happen” always happens

5. There’s a better way to troubleshoot errors in production

Now let’s back up these points with some data.

17All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

1. How Many Logging Statements Actually Contain Variables?

The first thing we wanted to check is how many variables are sent out in each
statement. We chose to slice the data on a scale from 0 variables up to 5 and above,
in each repository. We then took the total count, and got a sense of the average
breakdown over all of the projects in the research.

Average Java Project by Number of Variables

As you can see, the average Java project doesn’t log any variables in over 50% of its
logging statements. We can also see that only 0.95% of logging statements send out
5 variables or more.

This means that there’s limited information about the application that is captured by
the log, and finding out what actually happened might feel like searching for a needle
in a log file.

18All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

2. How Many Logging Statements Are Activated in Production?

Development and production environments are different for many reasons, one of
them is their relation to logging. In development, all log levels are activated. However,
in production only ERROR and WARN are activated. Let’s see how this breakdown
looks like.

Production vs. Development Logging

The chart shows that the average Java application has 35.5% unique logging
statements that have the potential to be activated in production (ERROR, WARN),
and 64.5% of statements that are only activated in development (TRACE, INFO,
DEBUG).

Most information is lost. Ouch.

19All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

3. What’s the Average Number of Variables per Each Log Level?

So, not only do developers skimp on variables in their statements, the average Java
application doesn’t send out that much statements to production logs in the first
place.

Now, we’ve decided to look at each log level individually and calculate the average
number of variables in the corresponding statements.

Average Number of Variables per Logging Statement

The average shows that TRACE, DEBUG and INFO statements contain more
variables than WARN and ERROR. “More” is a polite word, considering the average
number of variables in the first three is 0.78, and 0.5 in the last 2.

20All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

That means that production logging statements hold 35% less variables than
development logging statements. In addition, as we’ve seen earlier, their overall
number is also much lower.

If you’re searching the log for clues as to what happened to your application, but
come up blank – this is why it happens. Not to worry, there’s a better way.

OverOps lets you see the variables behind any exception, logged error or warning,
without relying on the information that was actually logged. You’ll be able to see the
complete source code and variable state across the entire call stack of the event.
Even if it wasn’t printed to the log file. OverOps also shows you the 250 DEBUG,
TRACE and INFO level statements that were logged prior to the error, in production,
even if they’re turned off and never reach the log file.

We’d be happy to show you how it works, click here to schedule a demo.

4. This Should Never Happen

Since we already have information about all of those logging statements, we’ve
decided to have a little fun. We found 58 mentions to “This should never happen”.

All we can say is that if it should never happen, at least have the decency to print out
a variable or 2, so you’ll be able to see why it happened anyway :)

Final Thoughts

We all use log files, but it seems that most of us take them for granted. With the
numerous log management tools out there we forget to take control of our own
code – and make it meaningful for us to understand, debug and fix.

There’s a better way.

21All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/request-demo?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/request-demo?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook

What's the Top Java Logging
Method on GitHub?

String Concatenation vs
Parameterized Logging

Parameters, concatenations or both; which logging method should you use?

A log is a log is a log. Some of us use dedicated log tools to monitor it, while others
prefer going through the raw log lines with their very own eyes. It doesn’t matter how
we consume it – it’s an inseparable part of our development cycle.

There are a lot of methods in which we can write to our logs, when endless debates,
opinions and arguments surround the logging world. We’ve decided to focus on one
of those topics – and understand which method is better: String concatenation or
parameterized logging. How do most developers write variables to their logs?

Let’s find out.

22All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Chapter 4

Adding Up the Numbers

In the previous chapter we tried to understand why production logs can’t help us find
the real cause of errors and exceptions. Our research returned a lot of data, and we
could see a pattern regarding the use of String concatenation and parameterized
logging. That lead us to the following question:

How do most developers write to their logs – String concatenation, parameterized
logging or both?

And the Winner Is…

Use of each method across all statements

Well well well, what do we have here? The biggest winner is the use of no method at
all. Or in other words, it seems that over 50% of statements don’t contain variables.
The runner up is parameterized logging, with an appearance in a little over 30% of
statements.

23All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Now, let’s take a deeper look at the use of these methods across repositories:

Use of each method across repositories

Parameterized logging takes the cake (or the pie chart in this case), but it’s a small
win. We can see that over 46% of repositories use a mix between the parameterized
and the concatenation methods. This means that too many developers didn’t choose
one method and ended up using both in the same project.

Now that we know who the clear winner is, it’s time to understand how it got the
crown.

24All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Strings or Parameters?

First thing’s first – why do we even need these methods?

When it comes to our log file, we often find ourselves wanting to merge or combine
different strings and variables into a single log message. Doing so makes it easier to
monitor and understand what happened when the application encounters an error or
throws an exception. The 2 methods we’ve checked are:

• String concatenation – Adding parameters via the “+” operator

• Parameterized logging – In which we use the {} variant, also known as curly
brackets, braces or formatting anchor

Now that we know how they’re actually used, let’s take a deeper look and see what
are the main differences between the two:

String Concatenation

String concatenation lets us add variables using the “+” operator, as you can see in
the following example:

It can get a little messy, not only due to how the code looks but also since the
variables are converted to strings, regardless of whether the message will be logged
or not. In other words, they are evaluated immediately in every log level, even if we’re
not using it, which in return might affect the overhead of the application.

For example, if we use String concatenation for DEBUG level while running in
production, the variables will still convert to strings, even though DEBUG level
statements are not logged.

There are ways in which we can overcome this issue, such as using the
logger.isDebugEnabled() function. As you can guess, this function checks whether
debug is enabled before formatting the message.

25All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

This can prevent String concatenation from happening when it’s not necessary,
reducing the overhead, but in return it will make the code look like this:

Now think how long your code will be if you use this function with hundreds of log
messages. Yikes.

Parameterized Logging

When using parameterized logging, the variables are added with the {} variant:

This method helps clean up the code, but what’s even better is that the parameters
are evaluated only if the statement is needed. Using this messaging format eliminates
the need to call isDebugEnabled(), since the variables won’t convert unless they’re
called.

Going back to our DEBUG log level example, it means that when we run our
application in production the variables included in the DEBUG log message will not
be converted to string, making this method much more efficient than String
concatenation.

26All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Diving into the Log Level

Going back to our data crunch, now that we know which method might be better for
low production overhead, we’ve decided to see if it affects the choice of which one
to choose per log level.

We know that the amount of variables sent to the log is pretty low, and the average
number runs between 0.8 variables for an average DEBUG level message, and 0.4
variables for ERROR. So while we’re at it, we’ve decided to see which percentage of
statements are sent in each method to each log level.

Average use of each method per log level in GitHub’s top Java projects

Many developers use String concatenations in their local environment (TRACE,
DEBUG, INFO), with 33% statements for concatenations in TRACE and 22%
statements in DEBUG level. Parameterized logging is the popular choice in INFO log
level, with 37% of statements. The clear pattern here is that as we move towards
production, the use of either method goes down.

Or in other words, developers don’t send out enough variables when it comes to their
production environment. It doesn’t mean they don’t use their logs, since they might
use Strings to monitor what’s going on – but wouldn’t you want to know more about
when and why your code broke?

27All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Keeping Track of the Logs

Searching through your log files for certain strings might feel like… searching for a
needle in a log file. If you find yourself wasting hours or even days trying to debug
using your logs, you’d be happy to know that there’s a better way.

OverOps tells you when, where and why you code breaks in production. It lets you
see the variables behind any exception, logged error or warning, without relying on
the information that was actually logged.

It gives you the complete source code and variable state across the entire call stack
for each event, error or exception – Even if it wasn’t printed to the log file. OverOps
also shows you the last 250 DEBUG, TRACE and INFO level statements that were
logged prior to the error, in production, even if they’re turned off and never reach the
log file.

Make your logs better. Click here to schedule a demo.

Final Thoughts

As we’ve said before, there isn’t a right (or wrong) way to write to your log files, but
there are methods you should apply if you want to get the most out of it.

The most important thing is that you’ll keep track of what’s going on in your code so
you’ll be able to understand it. If not for your teammates, then for your future self that
won’t have to deal with riddles just to solve a bug.

28All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/request-demo?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/request-demo?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook

How Did We Get the Data?
Google BigQuery

Our data crunch cookbook is based on GitHub’s top 40,000 repositories, which
we examined, analyzed and broke down to understand how to use Java logging
in production.

First stop, getting the Java projects out of GitHub’s top 400,000 projects by stars:

This basically gave us all repos with their respective Java source files.

29All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Chapter 5

And… only took 11.2s, to process 134 GB. W00t. BigQuery magic right there.

Next step, getting the contents of those source files, excluding ones with android
packages and android repo names. We noticed there were some Arduino projects, so
we excluded those as well:

7.2s, for 12.8 GB.

30All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Hold on tight, the final query is a bit crazy. Including all the regex to extract the count
for the different logging levels:

16.9s, for 18.1 GB.

31All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Then, we added some regex magic and pulled out all of the log lines:

Now that we had the data, we started slicing it up. First we filtered out the number of
variables per log level:

32All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

Then calculated the average use of each tier. That’s how we got the average percent
of total repositories statements.

The final spreadsheet with all the data and some additional calculations is available
right here, along with the raw data file.

33All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

https://docs.google.com/spreadsheets/d/1qS9l52BDby07IuenDUur6PX0aL_SNFRJywHCKceSgDo/edit#gid=278821812
https://docs.google.com/spreadsheets/d/1qS9l52BDby07IuenDUur6PX0aL_SNFRJywHCKceSgDo/edit#gid=278821812
http://384uqqh5pka2ma24ild282mv.wpengine.netdna-cdn.com/wp-content/uploads/2017/02/Logging-Scrapes-from-GitHub.xlsx
http://384uqqh5pka2ma24ild282mv.wpengine.netdna-cdn.com/wp-content/uploads/2017/02/Logging-Scrapes-from-GitHub.xlsx

34All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook

35All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook

Final Thoughts
We all use log files, but it seems that most of us take them for granted. With the
numerous log management tools out there we forget to take control of our own
code – and make it meaningful for us to understand, debug and fix.

We’ve grown accustomed to digging in log files to find out how our applications
behave in production. But it doesn’t have to be like this. Generally speaking, log
files suck. Tons of unstructured text, sometimes the information you’re looking for
wasn’t even logged, and then there’s the debugging paradox, adding logging
statements and hoping the error that sent you on that chase would happen AGAIN.
But… Java debugging doesn’t have to look like this:

There’s another way.

This eBook by inspired by Google’s developer advocate Felipe Hoffa, and his tabs
vs spaces post.

We hope you’ve found this guide useful and would be happy to hear your
feedback on twitter @overopshq and over email: hello@overops.com

36All rights reserved to OverOps © 2017

The Complete Guide to Logging Mistakes CTO's Must Avoid | OverOps

https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://twitter.com/felipehoffa
https://twitter.com/felipehoffa
https://medium.com/@hoffa/400-000-github-repositories-1-billion-files-14-terabytes-of-code-spaces-or-tabs-7cfe0b5dd7fd#.vhy7nf1qs
https://medium.com/@hoffa/400-000-github-repositories-1-billion-files-14-terabytes-of-code-spaces-or-tabs-7cfe0b5dd7fd#.vhy7nf1qs
https://medium.com/@hoffa/400-000-github-repositories-1-billion-files-14-terabytes-of-code-spaces-or-tabs-7cfe0b5dd7fd#.vhy7nf1qs
https://medium.com/@hoffa/400-000-github-repositories-1-billion-files-14-terabytes-of-code-spaces-or-tabs-7cfe0b5dd7fd#.vhy7nf1qs
https://twitter.com/overopshq
https://twitter.com/overopshq
mailto:hello@overops.com?subject=Loging%20Mistakes%20CTO's%20Must%20Avoid%20Feedback
mailto:hello@overops.com?subject=Loging%20Mistakes%20CTO's%20Must%20Avoid%20Feedback

